博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
2018.2.20 寒假作业 A - Multiplication Puzzle
阅读量:6454 次
发布时间:2019-06-23

本文共 2278 字,大约阅读时间需要 7 分钟。

 

题目:

The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row. 

The goal is to take cards in such order as to minimize the total number of scored points. 

For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring 

10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be 

1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

input

The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

output

Output must contain a single integer - the minimal score.

 

 

sample

6

10 1 50 50 20 5

 

 

 

Sample Output

3650

 

 


 

题目大意:

    一个整数序列包含N个1~100的整数(3<=N<=100),从中取出一个数并和相邻两边的整数相乘,依次进行下去直到只剩下首尾两个数为止,求最终的得到的和的最小值。两边的数不能取,且不重复选取。

思路:

    dp[i][j]表示将第I个和第j个之间的数取完得到的和,那么由k表示的数决定的子序列的宽度,依次递增宽度,并且移动子序列,即改变i的值,然后对i到i+k之间的元素进行遍历,比较dp[i][i+k]和先选取a[i]和a[j]之间的数,a[j]和a[i+k]之间的数,最后只剩下a[j],这一过程中的得到的和dp[i][j]+dp[j][i+k]+a[i]*a[i+k]*a[j]与原来的和的大小。

 

#include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;typedef long long ll;#define pi 3.14159265358979323846264338327#define E 2.71828182846#define INF 0x3f3f3f3f#define maxn 555555int a[110];int dp[110][100];int main() { int T; while (scanf("%d", &T) != EOF) { int i, j, l; for (i = 1; i <= T; i++) { scanf("%d", &a[i]); } memset(dp, 0, sizeof(dp)); for (l = 2; l < T; l++) { for (i = 2; i + l <= T + 1; i++) { j = i + l - 1; dp[i][j] = INF; for (int k = i; k < j; k++) { dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + a[i - 1] * a[k] * a[j]); } } } printf("%d\n", dp[2][T]); } return 0;}

 

转载于:https://www.cnblogs.com/ineedyou/p/8456058.html

你可能感兴趣的文章
批处理文件
查看>>
1.每次按一下pushbutton控件,切换图片?
查看>>
Python 嵌套列表解析
查看>>
[GXOI/GZOI2019]旧词——树链剖分+线段树
查看>>
android 补间动画的实现
查看>>
2017年广东省ACM省赛(GDCPC-2017)总结
查看>>
第十届蓝桥杯B组C++题目详解和题型总结
查看>>
树的存储结构2 - 数据结构和算法42
查看>>
函数的嵌套调用
查看>>
OC中使用 static 、 extern、 const使用
查看>>
简单理解函数回调——同步回调与异步回调
查看>>
POJ 1007
查看>>
Android 多个Activity 跳转及传参
查看>>
中文文本预处理流程(带你分析每一步)
查看>>
anroid 广播
查看>>
AJAX POST&跨域 解决方案 - CORS
查看>>
如何设计企业内部的数据平台?
查看>>
关于最小生成树中的kruskal算法中判断两个点是否在同一个连通分量的方法总结...
查看>>
【译】Linux系统和性能监控(4)
查看>>
开篇,博客的申请理由
查看>>